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Transitions between B and y rhythms in neural systems
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We study the coexistence of different rhythms in a local network of one inhibitory and two excitatory nerve
cells for a wide range of the excitatory synapse strength and of the slowehignnel conductance. The
dynamic features of spike trains in the presence of noise are discussed. It is found that noise can both cause
switching between different states and induce coherent firing events.
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[. INTRODUCTION zation phenomena in electrosensitive cells of the paddlefish
have been studied in electrophysiological experiments by
The spatiotemporal characteristics of neural firing patterndleiman et al. [20]. Different types of noisy phase locked

in connection with brain function have received considerablgegimes were observed. Hence, the interesting question
interest, and many studies have been performed in order @ises: How is the dynamics of neural firing withultimode
understand the origin and role, as well as the dynamics dpehavior affected by noise?
synchronized neural activit{e.g., Ref.[1,2]). Many neural
systems can perform oscillations in different modes. The Il. MODEL
thalamocotical relay neurons, for instance, can generate ei-
ther spindle oS oscillations[3]. Recently, Neiman and Rus-
sell [4] have found that the electroreceptors in paddlefis
possess the property of being biperiodic. Moreover, brai
oscillations are normally divided into different types based

mainly on their frequency. Rhythms in tg(12-30 H3 and The Kopell model is based on Hodgkin-Huxley-type neu-

the y (30—80 Hz ranges are found in many parts of the X ;
nervous system and are associated with attention, perceptiorﬁ)ns[zﬂ' The voltage of an excitatory neuron is controlled

and cognition[5—7]. The same rhythms appear in the neo-PY the following differential equation:
cortex as well as in the hippocampus. It has been shown that ., 3 4
a model of inhibitory, gamma-aminobutyric acidergic CV=—0i(V=E) = gnam (V= Ena) = gk (V= B)
(GABA) interneurons of the hippocampus can generate —gahpW(V—EK)—igyn+i§pp|- )
rhythms[8]. Recently, Kopellet al. [9] demonstrated that a

model including both inhibitory interneurons and excitatory One recognizes the leak curreg(V—E,), the sodium
pyramidal cells can producg as well asy oscillations. It — current gy.m*h(V—Eya), the potassium currengn*(V

has been noted in electroencephalogram signals that rhythmsgy), and the applied curren’tjpm. In addition, another

of different frequencies can be found simultaneoUdl§].  type of potassium current is present. This is a slow K current,
The experimental and modeling studies have suggested thateating arafter-hyperpolarizatiofAHP) following a spike
rhythms in the hippocampus employ different dynamical

mechanisms to synchroniz&1,12. The 8 mode is able to 40 30

synchronize with long conduction delays corresponding to

signals traveling over a significant distance in the brain. ~  /7°\ __.___, -

Similar distances cannot be tolerated by thehythms that oot

are used for more local communications.
In most cases the effects of noise on neural firing have not \ /

We consider a minimal model for a neural network ca-

able of producing botl8 and y oscillations developed by
Ijiopell et al.[9]. The model includes two excitatory pyrami-
dal neurons and one inhibitory interneuron as shown in
Fig. 1.

been considered. Neural activity is known to be ndi&$],

and this stochastic feature is observed during both informa-
tion transmission and spontaneous firing. At the same time,
noise can play a constructive role in neural systems. In the
presence of a subthreshold signal, the excitation threshold &0
may be crossed whenever the signal has a maximum, as the

noise is superimposed onto the signal. This mechanism al- fiG. 1. Architecture of the Kopell oscillatory networ1 and

lows the biological system to detect signals that nearly disg2 are excitatory cells|3 is an inhibitory cell. Open and filled
appear in the noise backgroufii4,15, demonstrating the arrowheads indicate excitatory and inhibitory connections, respec-
effect of stochastic resonanf#6]. Without periodic forcing tively. Solid lines indicate fixed connections and the dash-dotted
an excitable neuronal system can exhibit the related phenontines represent synapses whose efficacies are varied in the simula-
enon of coherence resonarfdd—19. Stochastic synchroni- tions.
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in one of the excitatory neuronV.is the membrane poten- 50
tial, Ej, j=Na, K, is the Nernstor reversal potentials for 0 : :
the respective ions, and; is the corresponding conduc- " |
tancesc is the membrane capacitance. WW(‘//V/\)/‘//‘)INK‘)WW =

The gating variables obey the following dynamical equa- -'%% 00 200 300 200 500 600 700 800 900 1000
tions: 50

M= a(V)(1=m) = Br(V)m, 2 T ]
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FIG. 2. From top to bottom, the voltages BfL, E2, andl3,
spectively. Fott<200 ms, g¢e=0ganp=0.0 mS/cm producing a

—
-

where thea and 8 functions describe the voItage-dependentée
opening and closing rates of a particular channel, respec- > ) ]
tively. For each excitatory neuron, a single equation control%51 rhythm of about 45-50 Hz. At=200 ms, a slowly varying po

. - .lassium current is added by settigg,,=1.25 mS/crA. This makes
the state of the synapses going from this neuron to Others'El andE2 switch toB rhythms of 16—17 Hz. Since the spikes of

E1 andE2 are out of phase, the population of excitatory neurons
'Se: as (V)(1—8g)— Bs Se. (6) considered as a whole still produces oscillations in théand.
¢ © Finally, att=600 ms, theE-E connections are added by setting
Synaptic input to an excitatory neurghere,E1) results ~ Jee=0-15 mS/crA. This synchronize€1 andE2, producing 33
in a current rhythm in the theE population. For this plot, a transient of 100 ms
was removed. In the notation of the present paper, the modes de-
" picted here will be called, y,,,, andg, going from left to right.
IsynE1= YeeSe,e2(V—Ee) +0ieSi 13(V—E)). (7
Notice that thes variables refer to the presynaptic neuronsthe connections betwedtil andEg, aanahp, the maximal
conductance for the slow potassium ion channels.

(E2 and 13, respectively, whereas theV refers to the ;
) The above model demonstrates three main network modes
postsynaptic neurothere,E1). E, andE; denote the rever- (Fig. 2):

sal potentials associated with excitatory and inhibitory syn- (i) For low values of the two parameters, the three neu-

apses, respectively. A similar equation is used for the synap- oo ) .
tic current of E2. rons spike in synchrony with a frequency in theband.

L . . (ii) If ganp is increased, th&el and E2 neurons miss
onI-rhtﬁe;n::—?gocrzrre?:ri(;”ne())tlfn\éﬁlrgefjl'm”ar toE1 andE2, every other spike, lowering their individual frequencies into
y ' the B band. But sinceEl and E2 are out of phase, the
population of excitatory neurons as a whole continues to

cV=—0g,(V—E)) —gnamh(V—Eya) — gxn*(V—Ey) producey oscillations.
G e (iii) Increasing the connection strengths betwgdnand
“Isynt lappi- ®) E2 makes the excitatory neurons spike simultaneously,

. . s . thereb duci illations.
Noting that there is no need for, the remaining gating ereby producings oscillations

variables forl 3 are controlled by Eqg€2)—(4).
Inhibitory synapses are governed by the equation lll. DETERMINISTIC DYNAMICS

, A scan over a two-dimensional parameter space was car-
si=as(V)(1—s)—BsSi- (9 ried out forgap, varied in the rang§0.00 mS/cm through
2.00 mS/crf] and g, varied in the rangg0.00 mS/crh
The inhibitory neuron receives inputs froBil andE2 as  through 0.30 mS/cA}. The initial conditions were identical

well as from a mechanism of self-inhibition: for all calculations.
To determine the spiking mode, the regular spikind ®f
i'symsz (eiSe.e1+ JeiSe.£2) (V—Eo) +0iiSi 13(V—Ej). is used. First, the temporal location of thH& spikes is deter-

(10) mined. Thereupon, a window df5 ms around thé3 spikes
is searched for possible spikeskd andE2. For each point
The detailed description of the various functions and paramin the diagram, spike trains f&1 andE2 are thereby pro-
eter values can be found in the original papgl Two pa- duced. Hence, the oscillation mode is characterized by these
rameters are varied in the present stugly;, the strength of spike trains. A restriction is put upon this automated deter-
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FIG. 3. Different oscillation modes as functionsgy, (the cou- 0 200 400: 600 800 1000
pling between excitatory neurorasndg,n,, (the conductance for the (ms)
slow K channel in excitatory neurons FIG. 5. A simulation for ge.=0.05mS/cri and Ganp

=1.25 mS/crh.For these parameter values, thgop and 8 solu-

mination procedure, namely that the period of the oscillatiortions coexist. The system starts out in the synchrogusode. For
mode must be less that half the length of the spike traind,e[220 ms;240 mk(marked with the upper, gray bpxhe applied
thereby ensuring at least two occurrences of the full periodcurrent to theE1l neuroni,,,e; is temporarily lowered from

The results are depicted in Fig. 3. Here, one can distin5-5 #Alcm? to 4.5uA/cm?. This makes theELl neuron miss a
guish four to five different oscillatory modes. The first stateSPike, changing the overall spiking mode to the asynchrongys
y corresponds ta rhythms when all neuronsE(t, E2, 13) mode. Conversely, when foe [ 710 ms;?SO mp(marked with tr;e
spike in every cycle. The 4 population” statey,,, is lo-  OWer. gray box the value ofipp1; is lowered from 5.QuA/cm

I . pop . to 4.0 nAlcm?, the spiking mode changes back o

cated to the left with intermediate values @f,,. In this #

case, neuronkl andE2 demonstrateg rhythms of 16_17. tion of a large region with coexisting solutions may have

) . . ) ﬁmportant interpretations with respect to the brain function.

n t.r|1|e Y ban?}. There 'g a Iargg ;eﬁ'o'ﬁ OECUp'Ed. Eyhﬂ if One question is: Can the Kopell model switch between
ohsmf ations w e][eEhl ar;] Eh2 ar\?vynh 3 synchrony wit h al the coexisting states? Since thg,, and 8 modes are both

the requency o they r y_t m. Wit escreasinganyp, they stable, the model does not switch spontaneously. One must
evolve into theS populationf3,,p. This state produce;/a somehow poke it externally to make it change to another
rhyt_hm, .bUt only half as powerful as the state des_cr_lbed dynamical state. In Fig. 5, this has been done by temporarily
earlier since only one excitatory neur&i spikes. Within a applying an additional external current ofdA/cm? to ei-
range of parameters, one can observe high-order solutioq erE1l or E2. This can cause one of the neurons to miss a
with different combinations of spiking and silent states in thespike, thereby changing the spiking mode back and forth

two excita’gory neurons. The dynamics seem to be limited hetween the coexisting,,, and 8 modes. Physiologically,
thﬁ. ghaigldlredcltzlc;n by the .ippjarincti of f? st|lenft tﬁtafm;nthis extra applied current, together with ionic and synaptic

which £ an bi never Sp'heh ue to the etrects (')k' € £ th currents, could represent the influence of other neurons of the
current in combination with the spontaneous spiking of th&, 4in This influence may in many instances be considered as

13 l?euron.d s T lation f Hd _stochastic. Let us, therefore, consider the influence of fluc-
instead of using a simulation for each diagram po'nt’tuations on the switching process.

we just let a simulation run while gradually changing the
parameter, the border g~ 0.043 08 mS/crhdisappears. A
forward-and-backward adiabatic scan reveals thatythg,
mode and the B mode coexist for Qee Since noise may have different origins and can contribute
€[0.0286 mS/crf10.0768 mS/crfi| (Fig. 4. The observa- in different ways, we assume that our network operate in a
noisy field(Fig. 1). We model it as Gaussian noigét) with
Yoop B intensity D added to the first equations of each neuron.
| | Transition between coexisting,,, and 8. With noise of
0.0286 0.0768 sufficient intensity, the system switches between two states.
8eo (mSfen) This can be characterized in different ways. First, we can
FIG. 4. One-parameter scan fgg,,=1.25 mS/crA. The scan introduce a shift between the spiking event&ih andE2 as
starts in they,,, mode in the left end of the axis, switching to the A @=27t/T. In this case, the system can be considered as
B mode when the y,,, mode becomes unstable ajc bistable where a trajectory alternates betwdeh=0 and

=0.0768 mS/crh The reverse scan, started to the right in he A ¢ = [Fig. 6@]. With increasing noise intensity, hopping
mode, switches to the,,, mode only wherg,,=0.0286 mS/cth ~ becomes more frequent. Second, the system can be described
is reached. In the gray region, the two modes coexist. via the overall dynamics of the excitatory neurons. Let us

IV. STOCHASTIC DYNAMICS
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‘ 1 ®) another state. With increasing noise, the residence times in
the two states become equal.

i 1 A quantitative measure of coherence is the so-called regu-
L ] larity coefficient that can be calculated [d€)]

R=(n)/\(7%)—(7)% 11

al ] wherer is specified as the switching time between the states
2t 1 [Fig. 7(a), dashed curveor as the interspike intervdFig.
0 20000 40000 60000 80000 100000°%.00 o6z - o.04 7(b)]. The time averaged duration identifies the mean period
t (ms) f (kHz) and, hence, the mean frequen¢f)=1/7) of the noise-
o activated oscillations. Figure(d illustrates how the coher-

FIG. 6. (a) Switching processes between two modes &  ance of the switching eventalashed curvegrows mono-
normalized power spectra for the output signals from the eXC'tatOQfonically when the noise intensity is increased. Very strong
neurons. The noise intensity i§ increased from top to bottbm: noise causes fast switching. The residence time then be-
zg'(l)g mg;]cdrﬁ) 0.24, respectively =125 mS/C,  Jee  omes less than 2 interspike periods, and our two-state ap-

: ' proach no longer works.

The spike train provides an efficient way to code a se-
quence of action potentials with nearly the same shape since
the most important information in neuronal systems is
widely believed to be coded in the time sequence of action
tpotential generatio22]. The spike train is a binary time
series with a value of 1 at the time of action potential gen-
erations and O at other times. We analyzed the coherence
properties for spike trains in the presence of noise. The re-
'sults of a calculation of regularit§d1) as a function of noise
intensity are shown in Fig.(B). It is seen to display a maxi-
mum. For weak noise, the contribution gf,, to the whole

choose the parameters to be in the region whegg and 8
oscillations coexistpoint A in Fig. 3). In the noiseless case,
with the applied initial conditions, the resulting output oscil-

fz=17 Hz. With noise, an additional peak appearsfat
=34 Hz [Fig. 6b)]. With increasing noise, the peak &}
becomes broader and smaller in amplitude.

To describe the switching dynamics, we can calculate dif
ferent characteristics. FigurddJ illustrates the behavior of
the residence timésolid and dotted curvesn the bistable

system withA¢=0 andA ¢ = . With vanishing noise, the g a train is small. For optimal noise intensify,and Yoop

system is in thel =0 state, i.e., the residence time tends t0.,rihte equally to a spiking train. Strong noise destroys
infinity. When noise is introduced, the system switches totheﬁ thythm, and the regularity decreases. This represents
an example of coherence resonance in the noise-induced
switching between the different modes of the neural system.

Transition betweery and 8. In diagram presented in Fig.

3, regions ofy and 8 rhythms are separated by the region of
high-periodic solutions. Fixing the parameters at the pBint
(Fig. 3, with noise added, we observe direct transition
between the main rhythni&ig. 8). It is clearly seen how the
residence time in th@ regime grows with increasing noise
intensity. The measure of coherence calculated over inter-
spike intervals indicates a well-pronounced maximum at
some optimal noise intensity at whigh and y spike trains
alternate in a regular wajFig. 9). Here, we observe another
T T example of regularized hopping events induced by applied

(b) noise but now with one of the involved states being unstable
. for the considered parameters.

Transition to spiking dynamicd.et us hereafter see how
noise can cause firing events in this local netwdRaram-
eters are at poir€ in Fig. 3). It is known that the behavior of
] spike trains can exhibit coherence resonance at optimal noise

1.00 L intensity as described for a single Hodgkin-Huxley model
01 1.0 [18]. In this case, noise affects the dynamics of the system in
D two ways:

FIG. 7. (a) Residence time foa =0 (solid curveé and A= (i) The increase of noise intensity decreases the silence
(dotted curvé and coherence of switching tinfelashed curyeas  (activation time so that the contribution of the spiking dy-
functions of the noise amplitudéb) regularity calculated over in- hamics increase&=ig. 9). This tendency enhances the regu-
terspike intervals @,n,=1.25 mS/cr, ge=0.05 mS/cr). larization of spiking dynamics of the membrane potential.
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FIG. 10. Regularity for (8) gapp=2.0 mS/CM, Jee

=0.0 mS/cm and (b) ganp=2.0 MS/cM, gee=0.2 mS/cni. Note
how the two peaks observed (a) are closer to one another {h).

proach one anothgFig. 10b)]. The excitable units demon-
strate a well-pronounced peak of coherence at the same noise
intensity. The maximal value dR is higher than in the pre-
vious case because of synchronization eff¢28.

V. DISCUSSION

We demonstrated a series of synchronization transitions in
a system of three coupled neural cells generaingnd y

(if) Noise also results in the amplitude and in phase flucrhythms. For the deterministic model, the overall activity is
tuations of the firing dynamics destroying the periodicity in controlled by the conductance of a slow Khannel and by

spiking events.

the connection strength between the excitatory neurons.

The competition of t_hese two r_nechanisms produces thE_ighteen different spiking modes have been identifi24].
coherence resonance, i.e., a maximal coherence for an optithin a wide range of parameters two main oscillatory
mal noise level. This mechanism is responsible for the firsimodes, referred to g8 andy rhythms, coexist. It was shown

peak of coherence fd1 (Fig. 10. With vanishing connec-
tion between excitatory cellgg,=0 mS/cnt), E2 demon-

how the system can change back and forth between these two
regimes if a small additional input current is added in short

strates coherence of spiking events at higher noise intensifyeriods of time.
because of different internal parameters. Remarkably, due to Next, we explored the effect of noise on the system dis-

inhibitory synapsescontrolled directly in the Kopell model

playing different spiking patterns. In the area with coexisting

by varying theg;; andg;e), the first neuron adjusts its spik- solutions, noise causes the network to jump from one state to
ing train and demonstrate secondary coherence resonancetlé other. The all-or-nothing effect of being either in one

higher noise intensitjfFig. 10@]. When theE1-E2 connec-
tion is introduced @..=0.2 mS/cM), the two peaks ap-

1.19 .
117 .
1.15 .

113 .

1.09 | 1

1.07 .

1.6 2
D

1.06 ——1——
00 05 1.0

0 25 3.0

FIG. 9. Coherence dynamics of interspike intervals dqp,
=0.5 mS/cm andge.=0.2 mS/cm.

oscillatory mode or in hopping between them depends on the
noise intensity. The output signal demonstrates quite “regu-
lar” switchings for a certain noise intensity. Moreover, noise
can initiate switchings in the region where the mgiand y
oscillations are separated by high-periodic solutions in the
parameter space. In this case, we again indicate an optimal
noise intensity at which jumping behavior becomes coherent.

A particularly interesting finding is that, due to synaptic
inhibitory interaction, the excitatory cells can demonstrate
double coherence resonance. With introduction of coupling
between these neurons, the two peaks of regularity merge
together giving rise to further gain of regularity by virtue of
synchronization.
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