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Transitions betweenb and g rhythms in neural systems
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We study the coexistence of different rhythms in a local network of one inhibitory and two excitatory nerve
cells for a wide range of the excitatory synapse strength and of the slow K1-channel conductance. The
dynamic features of spike trains in the presence of noise are discussed. It is found that noise can both cause
switching between different states and induce coherent firing events.
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I. INTRODUCTION

The spatiotemporal characteristics of neural firing patte
in connection with brain function have received considera
interest, and many studies have been performed in orde
understand the origin and role, as well as the dynamics
synchronized neural activity~e.g., Ref.@1,2#!. Many neural
systems can perform oscillations in different modes. T
thalamocotical relay neurons, for instance, can generate
ther spindle ord oscillations@3#. Recently, Neiman and Rus
sell @4# have found that the electroreceptors in paddlefi
possess the property of being biperiodic. Moreover, br
oscillations are normally divided into different types bas
mainly on their frequency. Rhythms in theb ~12–30 Hz! and
the g ~30–80 Hz! ranges are found in many parts of th
nervous system and are associated with attention, percep
and cognition@5–7#. The same rhythms appear in the ne
cortex as well as in the hippocampus. It has been shown
a model of inhibitory, gamma-aminobutyric aciderg
~GABA! interneurons of the hippocampus can generateg
rhythms@8#. Recently, Kopellet al. @9# demonstrated that a
model including both inhibitory interneurons and excitato
pyramidal cells can produceb as well asg oscillations. It
has been noted in electroencephalogram signals that rhy
of different frequencies can be found simultaneously@10#.
The experimental and modeling studies have suggested
rhythms in the hippocampus employ different dynami
mechanisms to synchronize@11,12#. The b mode is able to
synchronize with long conduction delays corresponding
signals traveling over a significant distance in the bra
Similar distances cannot be tolerated by theg rhythms that
are used for more local communications.

In most cases the effects of noise on neural firing have
been considered. Neural activity is known to be noisy@13#,
and this stochastic feature is observed during both infor
tion transmission and spontaneous firing. At the same ti
noise can play a constructive role in neural systems. In
presence of a subthreshold signal, the excitation thres
may be crossed whenever the signal has a maximum, a
noise is superimposed onto the signal. This mechanism
lows the biological system to detect signals that nearly d
appear in the noise background@14,15#, demonstrating the
effect of stochastic resonance@16#. Without periodic forcing
an excitable neuronal system can exhibit the related phen
enon of coherence resonance@17–19#. Stochastic synchroni
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zation phenomena in electrosensitive cells of the paddle
have been studied in electrophysiological experiments
Neiman et al. @20#. Different types of noisy phase locke
regimes were observed. Hence, the interesting ques
arises: How is the dynamics of neural firing withmultimode
behavior affected by noise?

II. MODEL

We consider a minimal model for a neural network c
pable of producing bothb and g oscillations developed by
Kopell et al. @9#. The model includes two excitatory pyram
dal neurons and one inhibitory interneuron as shown
Fig. 1.

The Kopell model is based on Hodgkin-Huxley-type ne
rons @21#. The voltage of an excitatory neuron is controlle
by the following differential equation:

cV̇52gl~V2El !2gNam
3h~V2ENa!2gKn4~V2EK!

2gahpw~V2EK!2 i syn
e 1 i appl

e . ~1!

One recognizes the leak currentgl(V2El), the sodium
current gNam

3h(V2ENa), the potassium currentgKn4(V
2EK), and the applied currenti appl

e . In addition, another
type of potassium current is present. This is a slow K curre
creating anafter-hyperpolarization~AHP! following a spike

FIG. 1. Architecture of the Kopell oscillatory network.E1 and
E2 are excitatory cells,I3 is an inhibitory cell. Open and filled
arrowheads indicate excitatory and inhibitory connections, resp
tively. Solid lines indicate fixed connections and the dash-dot
lines represent synapses whose efficacies are varied in the sim
tions.
©2002 The American Physical Society01-1
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in one of the excitatory neurons.V is the membrane poten
tial, Ej , j 5Na, K, is the Nernst~or reversal! potentials for
the respective ions, andgj is the corresponding conduc
tances.c is the membrane capacitance.

The gating variables obey the following dynamical equ
tions:

ṁ5am~V!~12m!2bm~V!m, ~2!

ḣ5ah~V!~12h!2bh~V!h, ~3!

ṅ5an~V!~12n!2bn~V!n, ~4!

ẇ5aw~V!~12w!2bw~V!w, ~5!

where thea andb functions describe the voltage-depende
opening and closing rates of a particular channel, resp
tively. For each excitatory neuron, a single equation cont
the state of the synapses going from this neuron to othe

ṡe5ase
~V!~12se!2bse

se . ~6!

Synaptic input to an excitatory neuron~here,E1) results
in a current

i syn,E1
e 5geese,E2~V2Ee!1giesi ,I3~V2Ei !. ~7!

Notice that thes variables refer to the presynaptic neuro
(E2 and I3, respectively!, whereas theV refers to the
postsynaptic neuron~here,E1). Ee andEi denote the rever-
sal potentials associated with excitatory and inhibitory s
apses, respectively. A similar equation is used for the syn
tic current ofE2.

The inhibitory neuronI3 is very similar toE1 andE2,
only the AHP current is not included:

cV̇52gl~V2El !2gNam
3h~V2ENa!2gKn4~V2EK!

2 i syn
i 1 i appl

e . ~8!

Noting that there is no need forw, the remaining gating
variables forI3 are controlled by Eqs.~2!–~4!.

Inhibitory synapses are governed by the equation

ṡi5asi
~V!~12si !2bsi

si . ~9!

The inhibitory neuron receives inputs fromE1 and E2 as
well as from a mechanism of self-inhibition:

i syn,I3
i 5~geise,E11geise,E2!~V2Ee!1gii si ,I3~V2Ei !.

~10!

The detailed description of the various functions and para
eter values can be found in the original paper@9#. Two pa-
rameters are varied in the present study:gee, the strength of
04190
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the connections betweenE1 andE2; andgahp , the maximal
conductance for the slow potassium ion channels.

The above model demonstrates three main network mo
~Fig. 2!:

~i! For low values of the two parameters, the three n
rons spike in synchrony with a frequency in theg band.

~ii ! If gahp is increased, theE1 and E2 neurons miss
every other spike, lowering their individual frequencies in
the b band. But sinceE1 and E2 are out of phase, the
population of excitatory neurons as a whole continues
produceg oscillations.

~iii ! Increasing the connection strengths betweenE1 and
E2 makes the excitatory neurons spike simultaneou
thereby producingb oscillations.

III. DETERMINISTIC DYNAMICS

A scan over a two-dimensional parameter space was
ried out forgahp varied in the range@0.00 mS/cm2 through
2.00 mS/cm2] and gee varied in the range@0.00 mS/cm2

through 0.30 mS/cm2]. The initial conditions were identica
for all calculations.

To determine the spiking mode, the regular spiking ofI3
is used. First, the temporal location of theI3 spikes is deter-
mined. Thereupon, a window of65 ms around theI3 spikes
is searched for possible spikes inE1 andE2. For each point
in the diagram, spike trains forE1 andE2 are thereby pro-
duced. Hence, the oscillation mode is characterized by th
spike trains. A restriction is put upon this automated de

FIG. 2. From top to bottom, the voltages ofE1, E2, andI3,
respectively. Fort,200 ms,gee5gahp50.0 mS/cm2 producing a
g rhythm of about 45–50 Hz. Att5200 ms, a slowly varying po-
tassium current is added by settinggahp51.25 mS/cm2. This makes
E1 andE2 switch tob rhythms of 16–17 Hz. Since the spikes o
E1 andE2 are out of phase, the population of excitatory neuro
considered as a whole still produces oscillations in theg band.
Finally, at t5600 ms, theE-E connections are added by settin
gee50.15 mS/cm2. This synchronizesE1 andE2, producing ab
rhythm in the theE population. For this plot, a transient of 100 m
was removed. In the notation of the present paper, the modes
picted here will be calledg, gpop , andb, going from left to right.
1-2
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mination procedure, namely that the period of the oscillat
mode must be less that half the length of the spike tra
thereby ensuring at least two occurrences of the full peri

The results are depicted in Fig. 3. Here, one can dis
guish four to five different oscillatory modes. The first sta
g corresponds tog rhythms when all neurons (E1, E2, I3)
spike in every cycle. The ‘‘g population’’ stategpop is lo-
cated to the left with intermediate values ofgahp . In this
case, neuronsE1 andE2 demonstrateb rhythms of 16–17
Hz, but their overall behavior is seen to produce oscillatio
in the g band. There is a large regionb occupied byb
oscillations whereE1 andE2 are in full synchrony with half
the frequency of theg rhythm. With descreasinggahp , they
evolve into theb populationbpop . This state produces ab
rhythm, but only half as powerful as theb state described
earlier since only one excitatory neuronE1 spikes. Within a
range of parameters, one can observe high-order solut
with different combinations of spiking and silent states in t
two excitatory neurons. The dynamics seem to be limited
the gahp direction by the appearance of a silent state,
which E1 andE2 never spike due to the effects of the AH
current in combination with the spontaneous spiking of
I3 neuron.

If instead of using a simulation for each diagram poi
we just let a simulation run while gradually changing thegee
parameter, the border atgee'0.043 08 mS/cm2 disappears. A
forward-and-backward adiabatic scan reveals that thegpop
mode and the b mode coexist for gee
P@0.0286 mS/cm2;0.0768 mS/cm2# ~Fig. 4!. The observa-

FIG. 3. Different oscillation modes as functions ofgee ~the cou-
pling between excitatory neurons! andgahp ~the conductance for the
slow K channel in excitatory neurons!.

FIG. 4. One-parameter scan forgahp51.25 mS/cm2. The scan
starts in thegpop mode in the left end of the axis, switching to th
b mode when the gpop mode becomes unstable atgee

50.0768 mS/cm2. The reverse scan, started to the right in theb
mode, switches to thegpop mode only whengee50.0286 mS/cm2

is reached. In the gray region, the two modes coexist.
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tion of a large region with coexisting solutions may ha
important interpretations with respect to the brain functio

One question is: Can the Kopell model switch betwe
the coexisting states? Since thegpop andb modes are both
stable, the model does not switch spontaneously. One m
somehow poke it externally to make it change to anot
dynamical state. In Fig. 5, this has been done by tempora
applying an additional external current of 1mA/cm2 to ei-
ther E1 or E2. This can cause one of the neurons to mis
spike, thereby changing the spiking mode back and fo
between the coexistinggpop and b modes. Physiologically,
this extra applied current, together with ionic and synap
currents, could represent the influence of other neurons o
brain. This influence may in many instances be considere
stochastic. Let us, therefore, consider the influence of fl
tuations on the switching process.

IV. STOCHASTIC DYNAMICS

Since noise may have different origins and can contrib
in different ways, we assume that our network operate i
noisy field~Fig. 1!. We model it as Gaussian noisej(t) with
intensityD added to the first equations of each neuron.

Transition between coexistinggpop and b. With noise of
sufficient intensity, the system switches between two sta
This can be characterized in different ways. First, we c
introduce a shift between the spiking events inE1 andE2 as
Df52pt/T. In this case, the system can be considered
bistable where a trajectory alternates betweenDf50 and
Df5p @Fig. 6~a!#. With increasing noise intensity, hoppin
becomes more frequent. Second, the system can be desc
via the overall dynamics of the excitatory neurons. Let

FIG. 5. A simulation for gee50.05 mS/cm2 and gahp

51.25 mS/cm2.For these parameter values, thegpop and b solu-
tions coexist. The system starts out in the synchronousb mode. For
tP@220 ms;240 ms# ~marked with the upper, gray box!, the applied
current to theE1 neuron i appl,E1 is temporarily lowered from
5.5 mA/cm2 to 4.5mA/cm2. This makes theE1 neuron miss a
spike, changing the overall spiking mode to the asynchronousgpop

mode. Conversely, when fortP@710 ms;730 ms# ~marked with the
lower, gray box!, the value ofi appl,E2 is lowered from 5.0mA/cm2

to 4.0mA/cm2, the spiking mode changes back tob.
1-3



,
il-
a

di
f

to
t

s in

gu-

tes

iod

-

ng
be-
ap-

se-
ince
is

ion

n-
nce
re-

-

ys
nts
ced

em.
.
of
t

e
ter-
at

r
lied
ble

f
oise
el
in

nce
-
u-
.

to
:

SOSNOVTSEVAet al. PHYSICAL REVIEW E 66, 041901 ~2002!
choose the parameters to be in the region wheregpop andb
oscillations coexist~point A in Fig. 3!. In the noiseless case
with the applied initial conditions, the resulting output osc
lations is ofb rhythm. This corresponds to a sharp peak
f b517 Hz. With noise, an additional peak appears atf g
534 Hz @Fig. 6~b!#. With increasing noise, the peak atf b
becomes broader and smaller in amplitude.

To describe the switching dynamics, we can calculate
ferent characteristics. Figure 7~a! illustrates the behavior o
the residence time~solid and dotted curves! in the bistable
system withDf50 andDf5p. With vanishing noise, the
system is in theDf50 state, i.e., the residence time tends
infinity. When noise is introduced, the system switches

FIG. 6. ~a! Switching processes between two modes and~b!
normalized power spectra for the output signals from the excita
neurons. The noise intensity is increased from top to bottomD
50.15 and 0.24, respectively (gahp51.25 mS/cm2, gee

50.05 mS/cm2).

FIG. 7. ~a! Residence time forD50 ~solid curve! and D5p
~dotted curve! and coherence of switching time~dashed curve! as
functions of the noise amplitude;~b! regularity calculated over in-
terspike intervals (gahp51.25 mS/cm2, gee50.05 mS/cm2).
04190
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another state. With increasing noise, the residence time
the two states become equal.

A quantitative measure of coherence is the so-called re
larity coefficient that can be calculated as@19#

R5^t&/A^t2&2^t&2, ~11!

wheret is specified as the switching time between the sta
@Fig. 7~a!, dashed curve# or as the interspike interval@Fig.
7~b!#. The time averaged duration identifies the mean per
and, hence, the mean frequency^ f &51/̂ t& of the noise-
activated oscillations. Figure 7~a! illustrates how the coher
ence of the switching events~dashed curve! grows mono-
tonically when the noise intensity is increased. Very stro
noise causes fast switching. The residence time then
comes less than 2 interspike periods, and our two-state
proach no longer works.

The spike train provides an efficient way to code a
quence of action potentials with nearly the same shape s
the most important information in neuronal systems
widely believed to be coded in the time sequence of act
potential generation@22#. The spike train is a binary time
series with a value of 1 at the time of action potential ge
erations and 0 at other times. We analyzed the cohere
properties for spike trains in the presence of noise. The
sults of a calculation of regularity~11! as a function of noise
intensity are shown in Fig. 7~b!. It is seen to display a maxi
mum. For weak noise, the contribution ofgpop to the whole
spike train is small. For optimal noise intensity,b andgpop
contribute equally to a spiking train. Strong noise destro
the b rhythm, and the regularity decreases. This represe
an example of coherence resonance in the noise-indu
switching between the different modes of the neural syst

Transition betweeng andb. In diagram presented in Fig
3, regions ofg andb rhythms are separated by the region
high-periodic solutions. Fixing the parameters at the poinB
~Fig. 3!, with noise added, we observe adirect transition
between the main rhythms~Fig. 8!. It is clearly seen how the
residence time in theb regime grows with increasing nois
intensity. The measure of coherence calculated over in
spike intervals indicates a well-pronounced maximum
some optimal noise intensity at whichb andg spike trains
alternate in a regular way~Fig. 9!. Here, we observe anothe
example of regularized hopping events induced by app
noise but now with one of the involved states being unsta
for the considered parameters.

Transition to spiking dynamics. Let us hereafter see how
noise can cause firing events in this local network.~Param-
eters are at pointC in Fig. 3!. It is known that the behavior o
spike trains can exhibit coherence resonance at optimal n
intensity as described for a single Hodgkin-Huxley mod
@18#. In this case, noise affects the dynamics of the system
two ways:

~i! The increase of noise intensity decreases the sile
~activation! time so that the contribution of the spiking dy
namics increases~Fig. 9!. This tendency enhances the reg
larization of spiking dynamics of the membrane potential

ry
1-4
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~ii ! Noise also results in the amplitude and in phase fl
tuations of the firing dynamics destroying the periodicity
spiking events.

The competition of these two mechanisms produces
coherence resonance, i.e., a maximal coherence for an
mal noise level. This mechanism is responsible for the fi
peak of coherence forE1 ~Fig. 10!. With vanishing connec-
tion between excitatory cells (gee50 mS/cm2), E2 demon-
strates coherence of spiking events at higher noise inten
because of different internal parameters. Remarkably, du
inhibitory synapses~controlled directly in the Kopell mode
by varying thegii andgie), the first neuron adjusts its spik
ing train and demonstrate secondary coherence resonan
higher noise intensity@Fig. 10~a!#. When theE1-E2 connec-
tion is introduced (gee50.2 mS/cm2), the two peaks ap-

FIG. 8. Switching process betweeng and b rhythms forgahp

50.5 mS/cm2 andgee50.2 mS/cm2. With increasing noise ampli-
tude:D50.2 ~top trace!, 0.8 ~middle trace!, and 1.5~bottom trace!.

FIG. 9. Coherence dynamics of interspike intervals forgahp

50.5 mS/cm2 andgee50.2 mS/cm2.
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proach one another@Fig. 10~b!#. The excitable units demon
strate a well-pronounced peak of coherence at the same n
intensity. The maximal value ofR is higher than in the pre-
vious case because of synchronization effects@23#.

V. DISCUSSION

We demonstrated a series of synchronization transition
a system of three coupled neural cells generatingb and g
rhythms. For the deterministic model, the overall activity
controlled by the conductance of a slow K1 channel and by
the connection strength between the excitatory neuro
Eighteen different spiking modes have been identified@24#.
Within a wide range of parameters two main oscillato
modes, referred to asb andg rhythms, coexist. It was shown
how the system can change back and forth between these
regimes if a small additional input current is added in sh
periods of time.

Next, we explored the effect of noise on the system d
playing different spiking patterns. In the area with coexisti
solutions, noise causes the network to jump from one stat
the other. The all-or-nothing effect of being either in o
oscillatory mode or in hopping between them depends on
noise intensity. The output signal demonstrates quite ‘‘re
lar’’ switchings for a certain noise intensity. Moreover, noi
can initiate switchings in the region where the mainb andg
oscillations are separated by high-periodic solutions in
parameter space. In this case, we again indicate an opt
noise intensity at which jumping behavior becomes coher

A particularly interesting finding is that, due to synapt
inhibitory interaction, the excitatory cells can demonstra
double coherence resonance. With introduction of coupl
between these neurons, the two peaks of regularity me
together giving rise to further gain of regularity by virtue
synchronization.
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FIG. 10. Regularity for ~a! gahp52.0 mS/cm2, gee

50.0 mS/cm2 and ~b! gahp52.0 mS/cm2, gee50.2 mS/cm2. Note
how the two peaks observed in~a! are closer to one another in~b!.
1-5



W

.

ch

ce

F.
tt.

ev.

ch.

,

SOSNOVTSEVAet al. PHYSICAL REVIEW E 66, 041901 ~2002!
@1# R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse,
Munk, and H.J. Reitboeck, Biol. Cybern.60, 121 ~1988!.

@2# C.M. Gray, P. Ko¨nig, A.K. Engel, and W. Singer, Nature~Lon-
don! 338, 334 ~1989!.

@3# X.-J. Wang, Neuroscience59, 21 ~1994!.
@4# A. Neiman and D.F. Russell, Phys. Rev. Lett.86, 3443~2001!.
@5# S.E. Farmer, J. Physiol.~London! 509, 3 ~1998!.
@6# W. Singer, Annu. Rev. Physiol.55, 349 ~1993!.
@7# R. D. Traub, J. G. R. Jefferys, and M. Whittington,Fast Os-

cillations in Cortical Circuits ~MIT Press, Cambridge, MA,
1999!.

@8# X.-J. Wang and G. Buzsa´ki, J. Neurosci.16, 6402~1996!.
@9# N. Kopell, G.B. Ermentrout, M.A. Whittington, and R.D

Traub, Proc. Natl. Acad. Sci. U.S.A.97, 1867~2000!.
@10# R. Coppola Bressler and R. Nakamura, Nature~London! 366,

153 ~1993!.
@11# P.R. Roelfsema, A.K. Engel, P. Ko¨nig, and W. Singer, Nature

~London! 385, 157 ~1997!.
@12# A. von Stein, P. Rappelsberger, J. Sarnthein, and H. Pets

Cereb. Cortex9, 137 ~1999!.
@13# H.C. Tuckwell, Stochastic Processes in the Neuroscien

~SIAM, Philadelphia, 1989!; J.G. Taylor, inNeurodynamics,
edited by F. Faseman and H.D. Doebner~World Scientific,
04190
.

e,

s

Singapore, 1991!, pp. 129–164.
@14# H.A. Braun, H. Wissing, K. Scha¨fer, and M.C. Hirsch, Nature

~London! 367, 270 ~1994!.
@15# D.F. Russell, L.A. Wilkens, and F. Moss, Nature~London! 402,

291 ~1999!.
@16# K. Nakamura, Proc. Inst. Natural Sci.35, 179 ~2000!.
@17# A. Longtin, Phys. Rev. E55, 868 ~1997!.
@18# A. Neiman, P.I. Saparin, and L. Stone, Phys. Rev. E56, 270

~1997!; S.-G. Lee, A. Neiman, and S. Kim,ibid. 57, 3292
~1998!.

@19# A.S. Pikovsky and J. Kurths, Phys. Rev. Lett.78, 775 ~1997!.
@20# A. Neiman, X. Pei, D. Russell, W. Wojtenek, L. Wilkens,

Moss, H.A. Braun, M.T. Huber, and K. Voigt, Phys. Rev. Le
82, 660 ~1999!.

@21# A.L. Hodgkin and A.F. Huxley, J. Physiol.~London! 117, 500
~1952!.

@22# G.P. Moore, D.H. Perkel, and J.P. Segundo, Annu. R
Physiol.28, 493 ~1966!.

@23# D.E. Postnov, D.V. Setsinsky, and O.V. Sosnovtseva, Te
Phys. Lett.27, 49 ~2001!.

@24# A. Fausbo” ll, MSc. thesis, Technical University of Denmark
2001.
1-6


